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The combination of two semiempirical methods, the “extendédkidutheory” for repulsive energy and a
method derived from classical perturbation expansions for the dispersion energy, is used to evaluate the v
interaction energy between covalent rings or chains of sulfur compounds. In this paper, the parametriza
method of both parts of the energy is set up. The volume of the elementary cell and the heat of sublimat
of a-sulfur are in correct agreement with experimental values. As a test for the study of polynae:sedfdr,

a simple 1D-example shows correct behavior for interchain distance and cohesive energy. In each ca:s
detailed analysis of the contribution of each term involved in the total intermolecular potential function
given. In particular, we show the importance of three-body terms in the energetics of such structures.

1. Introduction the repulsive part, whereas the attractive part corresponding to
the dispersion energy may also be reached from semiempirical
approximations. The combination of the two methods did allow
a successful treatment of the alkane adsorption on graphite.
Here, we propose the same type of approach but with more
refinements of the dispersive part as recently introduced in the
determination of the intermolecular potential function for the
simulation of the physical adsorption of rare gases in silicalite
zeolite?

In this first paper (sections 2 and 3), we will briefly recall
the methods and develop the adequate parametrization for the
sulfur compounds. The parametrization of the attractive part
is unambiguously derived from the dispersion equations. For
the repulsive part, we will discuss the influence of the parameters
already published. In section 4, we will test the method gn S
molecular rings and on a known structure, ¢heulfur. Finally,
in section 5, we will apply the method to a model structure
made of two infinite helixes. This is a preliminary calculation
in a complete study of the-sulfur that will be fully developed
in part Il.

The purpose of this paper is to describe a method of
calculation suitable for the study ef-sulfur, whose structure
is characterized by large unit cells resulting from the assemblage
of covalent moieties through weak bonds. Sulfur appears under
several allotropic forms in the solid state where building blocks
are rings (s or S) or chains (infinite helixes). The-sulfur is
a well-known molecular crystal made of &own-shape rings.
The w-sulfur is not the most common variety, but it presents
industrial interests; it is used in agriculture and in the vulcaniza-
tion process. Its building blocks are infinite helixes. There
are two different allotropes whose complicated elementary units
cells are not completely resolved. Our final goal is to investigate
the low-energy structures, to compute from there a reaction path
leading from this solid to $molecules, and thus to study the
sublimation process. The complexity of the structure requires
our strategy to be a combination of two semiempirical methods.
A careful parametrization is necessary to obtain sufficient
accurate energies.

The sulfur crystalline structures involve both intra- and
?ntermolecular interaqtions; the po;e_ntial z_issociated with the 2 Theoretical Methods
intermolecular forces is usually partitioned into a repulsive part
and a negative part. In our systems, the size of the unit cell ~As outlined in the Introduction, the quantum mechanical ab
and the great number of calculations required to explore the initio approaches for calculating the energy between two
hypersurface of potential energy rule out the use of ab initio molecular systems in weak interaction are quite compl&uen
methods. For the intramolecular and the repulsive parts of the at the SCF level of approximatidhwhich is insufficient to
intermolecular interactions, we have used a crystalline extensioncorrectly involve the dispersion, since electronic correlation is
of the extended Htkel method (EHT). The theoretical treat- required, this algorithm is too complicated and time-consuming
ment of weak intermolecular forces necessitates going beyondto treat atomic systems such as or polymerized sulfurs.
the EHT approximation: the EHT method only accounts for Indeed, both the number of atoms in the elementary cell and
the number of calculations to optimize the geometry are large.
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calculation, since at this level of approximation (Hartré®ck) The atomic energy levels are often approximated by the
the energy curve either is repulsive (as in our cases in this paper)experimental ionization potentials of the corresponding orbitals.
or may have a very weak minimum (in some other ca3es). Sometimes it is more appropriate to parametrize from ab initio
The second one would appear with the introduction of electronic values, for example, from Herman and Skillman tabfeSome
correlation. fluctuations around these values can also be allowed according
Repulsive Energy The extended Hikel theory (EHT) to the charges on atoms in complex systems. Parametrization
implemented on crystalline structufelsas proved to give a  for the sulfur atom is discussed in section 3. Calculations are
correct repulsive energy in describing the physisorption of carried out for a set of representative points in a reduced part
alkanes on graphite. In nonzero temperature simulations, of the Brillouin zone, and energy is averaged over these points.
adjusted potentials are currently used. For example, in the Dispersion Energy. Application of time-dependent perturba-
adsorption of argon in silicalite zeolite ZSM-5, very accurate tion theory leads to a dispersion multipole expansion, which in
potentials for both the dispersion and repulsive parts (referred the case of two-body terms, is expressed as
as the PN1 model) were elaborated and used in Monte Carlo
simulations?® In a recent study, it has been shown that uﬁB(R) = _[CQBR*G_F CQBR*S_}_ C/i\gR710+ 2] @
replacing the adjusted BoriMayer type repulsive potential,

part of the PN1 potential, by EHT pOte““‘?" curves Ie_d 0 \vhere the coefficient€’s describe the interaction between two
accurate energy profiles tG8. Therefore, it looks quite jpqiantaneous dipole€g), a quadrupole and a dipol€g), an
legitimate to use EHT in the calculation of the repulsive energy octopole and a dipole, and two quadrupol@sy. Little algebra

of rr;]oleculalr _crystals. f the whol is deduced f is needed to link these coefficients tbpgble dynamic polar-
The repulsive energy of the whole system is deduced from j; jjiieg oy(w) at frequencyw. They are expressed as an

the difference between the total EHT energy of the solidmnd ;snite sum whose terms are functions of thepole energy

tw;]wes the Er']'”_ enetr)gy O]; oner::ovalelnt molecule or wflnltg hellllx transition between the ground state and an excited state, of its
wheren s the number of such covalent entities in the unit cell. - qja¢0r strength, and of the frequency. A straightforward

The_ EHT calculation Iea_ds to a repulsive interaction that ., ation betweeny(w) anda(0), the statidth pole polarizability
originates from the repulsion between the valence electrons Of(at o = 0), leads to a general formulation for the two-body
each covalent part. Indeed, each molecule (or chain) individu- coeﬁicienté in atomic unita:

ally appears as a saturated compound with a bandgap between
the occupied and unoccupied electronic levels. The interaction
of two similar molecules, therefore, concerns the pair combina-
tions of degenerate levels, an occupied orbital of one molecule
interacting with the equivalent occupied orbital on the other
molecule. The antibonding combination being populated, one .
gets a four-electron repulsion. At the distances considered, theWhereli andl> equal 1, 2, ... for a dipole, a quadrupole, etg.,
repulsion between the core levels is negligible: a fortiori, the 1S the Ith pole polarizability, andy is an averagdth-pole
nuclear repulsion is screened and is not the origin of the sulfur ~ ransition energy for each interacting species. The connection
sulfur repulsion. Equations of periodic EHT have been widely between the notations of eqs 4 and 5 is ensured for the first
developed and discussed in the literature. For physisorbed!®ms by?

systems, a detailed discussion of the repulsive character can be

@, +2) 7
4(2)!(2ly)! nﬁ +7

CrB(ll,) = 500 (0)0?(0)  (5)
I2

found elsewherewith references therein. For the sake of clarity, CQ B = CAB(l,l)
we briefly recall main formulas and notations for periodic EHT.
A set of valence Slater type orbitals (STO) and translation CQB — CAB(1,2)~I— CAB(2,1) (6)

vectors applied to a unit cell define the periodic system. Then
a set of atomic Bloch functiong;(k), wherek is a vector in

the reciprocal space, is constructed. These functions form a Cis = C*®(2,2)+ C*¥(1,3)+ C**(3,1)
basis for a linear combination expansion of crystal orbiigls
(k). The application of the variational theorem for e&epoint The parameterg, can be approximated B¥
leads to the secular determinant
m = [S(0)/oy(0)]** (7
IH,,(K) — &k)S, (k) =0 1)

where S(0) is known as thdth-order sum rule. It has been

where the energy integrad,.(k), the overlap integraf,(k), shown that a good approximation for the parametes given

and energies(k) are defined in terms of Bloch functions. The

13
overlap integralS,,(k) is directly expanded in terms of basic by
overlap integrals between atomic orbit&ls; it is modulated A A 1 Aseal/2
by a phase-dependent term. The energy integrals are expressed 11 = [Neg/0 (0)] (8)
in terms of overlap integrals and the atomic energy let)s
andH,, according to the weighted formdfa where N’;ﬁ is the effective number of electrons for. AA
detailed discussion of this approximation is given in earlier
H,. (k) =H,[1.755,,(k) — 0.75] 2 papers. This is sufficient to entirely defin€s parameters. For
Cs we needy, expressed from thg,(0) function (second-order
H,.(k) = [K/2](H,, + H,,)S,,(K) 3) sum rule) anday(0) already defined. Unfortunately, these

guantities are only known for few species. Kiselev et*al
In this weighted formulation, the parametéiin eq 3, instead  proposed an approximate equation for the quadrupdijgole
of being equal to 1.75 as in the Wolfsbergelmoltz formula, dispersion coefficienCQB, which involves only known and
is an expression that is dependent on the atomic energy levelspreviously defined quantitieg; and o,
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ChB — 45 A B m Ul UdABC(llvlzyls) = ZZZZABC(I1,|2,|3)VVABC(I1,I2,|3) (16)
A _8(11(112,]A+778+2,]B+7]A 9 1 2 I3
1 1 1 1

with the notations already used for two-body terms and where
WAEBC js a geometrical factor an#*BC is an electronic factor.
The functionZ”BC is a direct extension of the two-body formula,
connected to they’s and the oy(0)'s that can be found
elsewheré:® The geometrical factor®/BC are functions of
the threel;’s, the three interatomic distances, and the three
interior angles of the triangle in which the triplet of atoms are
vertexes13 These terms have to be damped just like two-body
interactions. Two or three different interatomic distances are
present in eackVterm. Therefore, we propose in this work to
introduce a damping factor for three-body interactions that is a
product of two or threef—such as expressions given in eq
15.

For pairs of like atoms, this expression underestimates the
values found from correlated ab initio calculations for neutral
atoms!® Let us denoteKg the ratio between the “exact” and
the approximated value fcﬂg‘A. Combining egs 6, 5, 8, and 9
and introducing thig factor lead to a quadratic equation in
(05)¥2 for pairs of like atoms:

12
=
oy

2 — Kglaf S} a5]"? — KS)(@))]*? =0 (10)

where thew = 0 value is understood. An approximate
expression fonsﬁ has been givetf

S =[9S" o2 (11) 3. Parametrization

o _ _ Dispersion Expressions The two key parameters aMy
Substitution of (11) in (10) leads to the final form of the anda,, which are sufficient to determin@. Then egs 11 and

equatior? 12 giveS; anda,—provided thaKg is known—and consequently
12 and Cg. Here, the development of the series has been

2[9(NGi) /a1 oy — KNGy o 1V%(05) % — considered up tcCg, after checking numerically that higher
K8[9NAﬁ(0L/f)5] va_ g (12) contributions were of the same order of errors compared with

those brought by other approximations elsewhere in the method.
This will be shown in the discussion of one of the examples at
the end of the paper. We shall successively discuss the main
steps necessary to determimg Nes, andKg for in-framework
sulfur atoms. The parametéx necessary to determine the
damping factors in eq 15 can only be found once the repulsive
part has been parametrized. We delay this discussion at the
end of the next section.

A new method, combining general relaxation theory with

- - Moretti's electrostatic model, was designed to determine in-
U~ ZAf exp( erii) (13) framework dipole polarizabilities from the evaluation of extra-
atomic relaxation energy during the two-electron Auger pro-

whereA, andb; are fitted parameters obtained from EHT energy Cess®® Although this method was primarily set up for ionic
vs distance curves. To take into account the fact that overlap @nd semi-ionic solids, it has been shown for silicon, aluminum,
of electron clouds cannot be neglected in the short-range regionand magnesium compouriighat the model can be applied
of distances, i.e., around the equilibrium separatiotamped whatever the target environment (ionic, covalent, or ionocova-
multipole expansion was introducétl. The dispersion multipole ~ 1€nt).
expansion is now written as Auger electron spectroscopy (AES) relies on a two-electron
process. When X-ray radiation of a chosen frequency hits a
Ug= _Zon(czn/RZ”) (14) target atom in a compound, one electron of its inner shell is
= ejected. This allows an electronic transition for a second
electron from an upper shell to the hole left in the inner shell.
where In doing so, this second electron does not give rise to a radiation
but gives its energy to another electron of the same level, which
2 (bR is in turn ejected. Therefore, the transition energy is converted
on=1— Z) expbR) (15) into kinetic energy. The generalized Auger parameter is defined
= K as the sum of this kinetic energy plus the binding energies of
. . the two electrons originally in the upper levels minus that for
In the last equatiorty is the Born-Mayer parameter of €q 13.  gjactrons in the inner shell at the beginning of the Auger process.

The damping functionsf are positive and tend to unity at ¢ 4he considers two compounds containing the same atomic
sufficiently large distances where long-range intermolecular target, the variation of the Auger parameter is equal to
forces prevail. On the other hand, it is clear from eq 14 that '

terms with largen are unimportant at separations that occur in

condensed phases. A& = 2ARY (17)
Perturbation theory up to third and fourth order is necessary

to obtain three-body dispersion terms involving triplets of where RY is the dynamic extra-atomic relaxation energy

species A, B, and C. The sign of these three-body terms associated with the Auger process in each of the two species

depends on the geometrical configuration, since such tripletsconsidered. The dynamic extra-atomic relaxation energy can

are both distance- and angle-dependent. Therefore, it isbe obtained from ligand polarization energy, as proposed by

customary to write the dispersion three-body terif as Moretti?! The second electron ejected during the Auger process

The resolution of eqs 12 and 11 are sufficient to getand
therefore Cg®.  Similar, but more complex, derivations are
available elsewhefeor Cjp.

The repulsive part of the energy, proportional to the square
of the overlap integral between the valence orbitals of the two
interacting species, is well represented by an atatom Borr-
Mayer type expansion:

1]
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is used as a probe of the ligand electrostatic energy associated

with the emission of the first electron from the atomic target.
Classical formulas developed elsewt€réor N identical
ligands lead to an expression for the polarization energy

_ Na
2y

U E? (18)

pol
whereE is the electrostatic field experienced by any ligand at
distanceR from the atomic targetyl is the coordination number,

andy = 1+ DaR 3. Dis a dimensionless factor that depends
only upon the site symmetry. By identifying the polarization

energy with the extra-atomic dynamic relaxation energy, one
can derive the following expression for the variation of the

generalized Auger parameter (between two compounds contain-

ing the same atomic target):

AE= 14.4A(M) (19)

Ry

The factor 14.4 arises when transforming energy units from au

to eV and distance units from au to A. For two compounds A
and B having the same atomic targegq 19 is more clearly
rewritten as

N,o Nro
£ - & =14, - FXCON — 80
Ry"+ DaoaRy  Rg™ + DpogRg

(20)

Knowing the ligand dipole polarizability and the extra-atomic

relaxation energy for a given compound is sufficient to get these

pieces of information for the second compound. Unfortunately,

these values are not known unambiguously for a large number
of compounds. An idea was to scale eq 20 by considering an

ideal unpolarizable compouff(UP) with a refractive index
equal to unity. It was shovff that a linear behavior can be
expected when the generalized Auger parameter vs é§71)
was plotted. This provides a means of calculathpgg. Then
the dipole polarizability for the ligands linked to the atomic
target (S in our case) is given by

aS°MP — A'SRS—L4
s T 14.MNg— DRs  AE

(21)

where A& is the variation of the generalized Auger parameter
between a given sulfur compound and the ideal UP-sulfur
compound andRs- is the sulfur-ligand distance.

A mean linear curve, plotted from the available data, is shown
in Figure 1. Whem = 1, we obtainfyps= — 38.7+ 1.1 eV,
which leads tA& = 7.9+ 1.1 eV, which should be used in eq
21. Infact, we decided to considAE as a parameter, of course
with a rational value, but directly connected to the parametriza-
tion of the repulsive part in order to have the simplest
parametrization for the whole. We shall discuss this point in
more detail later on. We finally chos&& = 6.8 eV, which
can be considered as issued from the lower bounddeg

Sulfur is divalent Ns = 2), and in eq 21, the factdbs
remains to be determined. Its expression has been derive
elsewhere?

_1+co§0j

S 8cod 0, (22)

wheref; = (180 — ;)/2 = 36.1°, o = 107.8 being the angle
between two adjacent-S5 bonds. TherDs = 0.39. The
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Figure 1. Scaling line for sulfur compounds. Generalized Auger
parameters:2* (£ in eV) and refractive indicég (n), respectively, are
31.6 and 2.367 for ZnS, 33.7 and 1.625 for NaSCN, 33.5 and 1.511
for NaS,05°5H,0, 34.1 and 1.499 for N&8Oy:2H,0, 32.7 and 1.665

for ZnSQnH,0, 32.9 and 1.503 for NiSfnH;0, 33.2 and 1.732 for
CuSQ-nH,0, 33.4 and 1.460 for NaHSEH,0O, 33.6 and 1.548 for
N&S0;, and 30.4 and 2.967 for HgS.

1.0

covalent distance has been taken toRges = 2.07 A. From

eq 21, we obtaimy = as = 5.4 A3 (from the upper bound for
Eups We would have obtained; = 7.7 A3). The fact that the
value of the dipole polarizability of sulfur atoms w-sulfur
rings is actually roughly twice that for the neutral and isolated
sulfur species reflects the covalent character of th& $ond.
The view provided by the Auger model considers atomic sites;
the polarizability is attributed to ligands of a given X-ray target.
Another equivalent view is brought about by introducing the
concept of bond polarizability originally derived for covalent
bonding. This model leads us to consider bonds rather than
atoms as centers of interactions.

The parameters for the fit dfler vs the electronic structure
have been previously determingd-or neutral sulfur atoms the
appropriate formula is

NS; = —0.0293\° + 0.9966N + 0.0062 (23)
whereN is the total number of (s, p) electrons in the outer shell.
Straightforwardly, we obtairlNgff = 4.931. In the first paper
of a previous study,the correction factoKg is drawn vs the
effective number of electrons (Figure 2). For S atoms, using
the NSﬁ value determined above, we obtddg = 2.968. Now
all remaining parameters can be computed; they are all listed
in Table 1.

Repulsive Interaction. Four parameters are necessary to
compute terms in egs 2 and 3: the matrix elemethjs for
each atomic orbital (s and p electrons) and the Slater exponents
is and {, entering in the algebraic development of overlap

Ointegrals. Many techniques, more or less empirical, and

approximations have been proposed. Diagonal terms of the
Hamiltonian are usually identified with ionization potentials of
the valence subshell considered, i.e., with the corresponding
orbital energies assuming Koopman'’s theorem to be valid. The
Slater exponents may thus be determined from ab initio atomic
calculations. They also can be derived from empirical rules.
Some of the main parametrizations proposed are listed in Table
2. The exponent parameters for STO’s have been determined
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Figure 2. Repulsive interaction energy between two infinite 1D helixes
(three atoms per cell) of sulfur atoni8is the distance between centers
of helixes. Curves are for the following values of, respectivélys=

&p Hss(in eV), andHp, (in eV): (+) 1.817,—16,—13 and 1.817;-20,
—11; (a) 1.817,—20, —13; (®) 1.817,—24, —13 and 1.817,-20,
—15; (v) 1.6, —20, —13; (©) 2.0, —20, —13.

6.5

TABLE 1: Parameters Used in the Calculation of the
Dispersion Energy of Sulfur

Basic Parameters

Ks 2.97
Nett = St 4.93
o 36.36
S 40.17
o 292.09

Two- and Three-Body Parameters
Cs 365.11
Cs 14716.50
DDD 3318.83
DDQ 26723.17
QQD 2151.763x 1C?
QQQ 1732.623 10°
DDDy —4525.219x 10

aAll values are in a.u., apart the dimensionless numbegsaNd
Ks. ° D stands for “dipole interaction” and Q for “quadrupole interac-
tion”. The last term is a fourth-order term. They are coefficients in the
W factor in eq 16.

TABLE 2: Parametrization of Integrals and Exponents for
EHT for Sulfur Atoms

authors s & —Hg& —Hp?
Slatef® 1.817 1.817
Burng’ 1.967 1.517
Clementi & Raimondf® 2.122  1.827
Pyykko& Lehr, Jr?° 2.042 1.689 24.145 11.555
Herman & Skillmani? 20.8 10.3
EHT standard parameters ~ 1.817  1.817  20.0 13.3
Chen & Hoffmani® 20.0 11.0

aln eV.

a long time ago by Slaté&from the so-called Slater rules and
by Burng’ who distinguished between s and p electrons.
Derivations from ab initio SCF calculations were also u&ed.
Values obtained from Slater rules look roughly as mean values.
For H,., all values are close together except thg value of
Pyykko and Lehr, JrZ? which is large.

It is important to evaluate the influence of these parameters
on the energy of our atomic systems. For a simple system
sufficient to give a trend, we considered the interaction energy

Ezzine et al.

of two infinite 1D helixes of sulfur atoms built from three-atom
elementary cells whose geometry will be described later. In
Figure 2 are plotted the results arising from changes both in
andH,,. Clearly, even large changeskfisor Hpp do not affect
significantly the interaction energy. Conversely, the Slater
exponents are the sensitive parameters. This is not completely
surprising. Indeed, the main terms in the EHT-matrix elements
are overlap integrals whose magnitudes are directly determined
from the values of Slater exponents. THg, terms are less
important. As it was explained in the last section, Avalue
was chosen in order to use the simplest parametrization of the
repulsive partthe standard onrei.e., mean values forg
exponents and no d functions. Polarization functions (d
functions here) may also be introduced in these semiempirical
calculations. It is worth noting that these are needed to correctly
describe the ab initio electronic structure in some highly
coordinated sulfur compounds. Since we consider here low-
coordinated sulfur compounds and since we have to calculate
repulsive intermolecular interactions, it is safe not to take into
account d functions. We checked on typical cases, indicating
that these choices were reasonable. For example, for all the
sulfur compounds studied in our work, it has been proved that
it was not worth using a value @t very different from that of
Cp.

As outlined in section 2, we need a BerWayer expression
of the repulsive energy (eq 13) to get the parambtereeded
to parametrize the damping function (eq 15). First, it is
important to stress that the total energy is reached from two
independent contributions. This means that dispersion param-
eters Cs, Cg, ...) are determined as shown above and that for
the repulsive part EHT results are directly introduced in the
calculation. ThereforeA, and b, are not required for the
calculation of the repulsive part of the energy. Olnljs needed
in the damping function (eq 15) for the dispersion energy.
Moreover, close to the interhelix distances corresponding to the
energy minima encountered in these weakly bounded molecular
crystals, this damping contribution is weak and, thus, so is the
influence of theb; value. The simple exponential form is in
fact too simple to reproduce the repulsive energy of intermo-
lecular systems in a large range of intersystem distances.
Therefore, since in this paper we are mainly interested in
obtaining information close to the energy minimum, and not in
obtaining a general potential, we decided to fit only a small
part of the repulsive curves, the one close to intermolecular
system distances. In Figure 2, for the retained set of atomic
para'l&meters, the fitted values thus #&e= 33.3 eV andb;
1.7 AL,

4. a-Sulfur Structure

At room temperature, sulfur is an orthorhombic molecular
crystal made of gcrown-shaped rings. The structure is well-
known31-33 The unit cell & = 10.465 A,b = 12.866 A,c =
24.486 A) includes 16 Srings organized in a nontrivial
noncoaxial stacking. The rings are slightly distorted owing to
crystal field effects. Enthalpies of sublimatidty,298 K, 1
atm) of o-sulfur have been obtained in a mass spectrometer
coupled to a Knudsen effusion céfl. These experiments
investigate the stability of the gaseous clusters in equilibrium
with the solid. Taking & as the reference, they obtained an
enthalpy of sublimatiofls,{298 K, 1 atm)= 100+ 5 kJ mof2.
From ou 0 K calculations, one can determifg,{0 K) and
then AHsyp by adding the integral oAC,, the molar heat
capacity from low-temperature adiabatic calorimetry experi-
ments3> To check the validity of our method, we will determine
the minimum energy structure, i.e., the value of the crystalline
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parameters, and then the energy of sublimation connected to
experiments. We are mainly concerned by the weak interaction 1.50 T . . . T
energies between covalent clusters (molecular rings here). + Repulsion
Starting from the experimental positions of atoms, we shall vary
the crystalline parameters, keeping the covalent bonds and angles
at their original values. Therefore, the treatment of the covalent 1.00
rings by the EHT method (only a semiempirical method!) is
not of crucial importance, since we are concerned with finding
the intermolecular interaction energy from a difference energy
calculation. However, to check the validity of the EHT method
in determining the minimum energy structure of this type of
covalently bonded systems, we first perform calculations on the
isolated § molecule.

The geometrical characteristics of thgrBolecule are well- 0.00
known. The covalent interatomic distance, the covalent angle, W
and the dihedral angle, respectively, 3r2.060 + 0.005 A, >
108.0+ 0.8, and 98.3+ 2.1°. More recent determinatioffs
propose a smaller value for the distanee2(050 A) but quite 0.50 —! ! ! ! ; !
comparable values for the angles. Most of the recent ab initio ' 100 11.0 120 13.0 140 150
calculations fall in each range of errors when the minimum b/A
energy structuf® is determined. From our set of EHT
parameters, defined in section 3, we fidd= 2.106 A, o =
112.6, and = 92.5. When they are compared with the
experimental values, the error is roughly 2%, 4%, and 6% for
d, o, and g3, respectively. This molecule has been already

4 2-body(C,+C,)

O 3-body

® Total

0.50

AE [/ ( eV/atom )

Figure 3. Partitioning of the interaction energy between rings in
o-sulfur along theb-axis.

died b ith oth i aticsncluding i close to the absolute minimum (see results below). The role
studied by EHT with other paraidrgetnzan SNCluding INSOMe — of the three-body terms is important because some triplets
cases an electrostatic correctit®nThese authors found com- involving two bonded atoms are taken into account. Removing

parable results as ours. The in.troduction of d fgnctions give these terms would lead to a very weak cohesion. The complete
worse results, and the introduction of electrostatic corrections minimization of the energy with respect to all three crystalline

does not bring significant improvements. In conclusion, we see parameters leads @= 10.9 A,b=13.7 A,c = 24.5 A, and
that in such types of element and molecules, EHT calculations Ag, . = —0.80 eV/imol(S). ' ' '

restricted to s and p orbitals lead to correct results even for Comparing the experimental values given at the beginning

Zyrct)ngly cov'zileng_kzronds (ie., for_ shct))rttvalues{hof |nt|§dratodm|t(r:] of the section, we see that the calculated values fondb are,
istances). For difference energies between the solid an erespectively, 4% and 6% larger than their experimental coun-

constituting molecules, only EHT terms corresponding to weak terparts. The experimental value faris found from our

|n.termolecula.r bonds' (ie., for !arge values of interatomic calculations. The volume of the calculated elementary cell is
d|s'F§nces) will_effectively c.ontnbute. Thgrgfore, WE MaY - ahout 11% higher than the experimental volume. The enthalpy
!eg|t|m§tely use EHT calculations for determining the repulsive of sublimation is reached by adding the integral of e,
interaction energies of our sulfur systems. term betweefT = 0 andT = 298 K, equal to 27 kJ mok3 to
Coming back to orthorhombic sulfur, we started from the the interaction energy. We obtaitHs298 K) = 104 kJ
geometry, taking the slight distortions of rings into accoint.  mol-1. The difference in the experimental value falls within
Then we varied the crystalline parameters, keeping fixed the the error range of the mass spectrometer measurement, the errc
geometry of the rings. Let us first discuss the choice of the gn AC, being negligible® Therefore, the model of intermo-
number ofk-points, sampling the (reduced) Brillouin zone, on |ecular potential function and its parametrization is able to
which the total EHT energy is averaged. Itis well-known that predict structural and thermodynamic propertiescesulfur in
the larger the size of the elementary cell the lower the number agreement with experimental results. Theoretical calculations
of necessark-points required for good accuracy of the total ono-sulfur have been published some years ago, but the driving
energy. Indeed, for large unit cells, the band dispersion is weak; idea of these studies was different from ours. They use the
it corresponds to taking into account phase relationships atso-called “6-exp” potential function (the ® term as the
distances equal to or larger than the norm of translation vectors, attractive part and the exponential function for the repulsive
and the calculations can be performed at a single point of the one), but the parametefs, A, andb; (in our notations) are
Brillouin zone when the cell vectors exceed-116 A. Then it adjusted in order to have the right geometrical structure and
has been checked that we can use the origin of the Brillouin sublimation energy. Then they use the ad hoc potential in a
zone, thel” point, since this high symmetry point is the most dynamic calculation to study intermolecular vibrational
obvious one. In the case of the two-helixes example given in modes'2-44 internal ones in a nonrigid body modél,and
section 5, we will see later that we have to introduce six Raman frequencie¢. As a first remark, let us stress on the
k-points, the zone-center point alone being quite insufficient in parameters values. As explained at the end of section 3, our
this (1D) small elementary cell case. Adding the dispersion values forA, andb; (and forCs too) are fitted to a few points
part of the energy, as described earlier with parameters givenclose to the minimum energy structure only and cannot be
in Table 2 and taking into account that all ring environments compared to those of Rinaldi and Pawley. However, from the
are not the same, we show in Figure 3 the variations of the retained set of atomic parameters (central curves in Figure 2),
components of the interaction energy vs the crystalline parameterwe can get another fit, better at short distances than the previous
b; the two other crystalline parametexsindc are kept constant ~ one but worse close to the interhelix distances. These new
(experimental values). Under these assumptions, we are veryalues are®, = 2303 eV andh, = 2.9 AL A straightforward
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Figure 4. Repulsive interaction energy contour maps as a function of ~
the shift and the rotation of the second helix relative to the first. Energies . » 0
are in eV/atom. Minima are indicated by crosses. o Lo
- g - 3072
] o=0° iy O-240°
change of units shows that these last parameters are of the samg;q e 5. simple schemes emphasizing the main interactions (dashed
order of magnitude than those of Rinaldi and Pavffeyin lines) responsible of the minima locations in Figure 4. The height of

Rinaldi and Pawley’s potential, (i) there is @3 or three-body each atom is indicated. See text for other definitions.

terms and (ii) the numerical values of repulsive parameters are | L.ds to an equivalent geometry. The periodicity is indicated

not extracted from an independent quantum mechanical calcula-, X . . ;
tion. With their adjusted “6-exp’ potential all the cited in the figure by the double-pointed dashed-line cell. For this

authoré2-# were able to find a correct agreement between their StrUctre: @ low-energy regiom\Erp < 0.04 eV/atom) exists
calculated lattice frequencies and the experimental ones. WeanOI the positions of two minima-0.026 eV/atom) are indicated

have shown in our examples how tBg and three-body terms ?}lzcgﬂzzei zggoegr::jeQIZ(atheLZ?L;eg;%r:n?;;whcox;dhn;\fﬁhe
may be important quantities for determining the right cohesive minima at such values cq and6. Some typica)I/ interactions
energy. We may conclude that for lattice frequencies these . U :

terms, rather connected to the structure (which is correctly are schematized in Figure 5. Three atoms (the elementary cell)

’ . of each helix are represented, and the black, full circles
described by two-body terms as shown in our second eXamplecorres ond to the atoms in the middle with respect to the height
in the next section), are likely less important than in the _p L - _ P - gnt.

. . . . . For g = 0, the repulsion is maximum fa& = 18C°, while the
calculation of cohesive energies. However, the remaining slight ; . R L
. . ; . . most stable configuration must be reachedéer 0°. This is
discrepancies compared with experimental values might be, at

least partly, canceled out by the introduction of higher order effectwel_y yvhat IS obsgr_ved from Figure 4 Now, fpe= 1/2,
terms in the dispersive perturbation expansion, as in our where minima occur, it is useful to consider four valuegjof

calculations fpr the discussipn. In all our plgts, the helix on the left i§ kept
’ fixed. The helix on the right is shifted and rotated (in the
clockwise direction) appropriately. Let us first consider the
anglesf = 60° and@ = 18C°. Clearly, they correspond to the
For this example, we study the interaction of two 1D helixes greatest repulsions. The lowest energy configurations might
in a simple case for their respective geometry. Let us considerbe the ones when the atom at height zero in the helix on the
two parallel conrotatory helixes, with a three-atoms per helix left has no atoms just in front of it in the helix on the right, as
elementary cell. All parameters have been determined in thewas the case for the structurg F 0; & = 0°]. These angles,
preceding sections, apart from the distances and the anglesvhose corresponding configurations &re= 0° andf = 240,
between covalent bonds we have consideted= 2.07 A, 0ess are shown in Figure 5. In these two cases the repulsions are
= 108.5, andh = 4.58 A, whereh is the height of each  not identical. Only the greatest repulsions are indicated and
elementary cell. This choice is connected to the real 3D casetaken into account in our reasoning. Repulsions of other atoms
of w-sulfur, which will be studied and discussed in part Il. must have a smaller but not negligible influence. To minimize
Without carrying out the complete optimization of structures, the repulsions between other atoms, the helixes on the right
let us first see on this example the behavior of the repulsive have to be rotated by an additional small an@éein a sense
energy when two of the geometrical parameters are varied. Letindicated by the arrow in Figure 5. If we admit a small variation
us define the parametqras a measure of the shift of the second of s = 20°, we exactly find the two minima, in Figure 4, ét
helix relative to the first. It is defined as the percentage of the = 34C° (0°—20°) andfd = 260 (240’ + 20°). Now, by addition
heightQ between two successive atoms (h&es h/3 = 1.53 of the dispersion part of the energy, the same type of plot is
A). Shifts larger than 1 (# x) are analogous to shifts for(0 shown in Figure 6. The similarity between the two figures is
< x < 1). The parametef represents the angle between the evident. A large part of the map corresponds to cohesive
projection of the position of the first atom of the second helix energy, the lowest energy region has the same shape and, a
and the y-axis. For the first helix the choice of reference axes previously, is very flat. A small difference appears in the
is such thatq = 0 and6 = 0°. In Figure 4, we plot the localization of energy minima. We have only one minimum

5. Interaction of Two 1D Helixes of Polymerized Sulfur

interaction repulsive energy contour map as a functiogarid of the energy, still forg = 1/2 but for6& = 30¢°. A simple
6. In this 1D calculation sixk-points are sufficient to obtain ~ scheme as the one proposed in Figure 5 for repulsions cannof
the convergence of the average energy. Starting fiepm D, be applied here, since the dispersion, introduced by pertubations

6 = 0°], a shift followed by a rotationd = 1, 6 = —120] has complicated the energy equations. However, this small
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Figure 6. Total interaction energy contour maps as a function of the
shift and the rotation of the second helix relative to the first. Energies
are in eV/atom. Minima are indicated by crosses.

075 T T T T T
+ Repulsion
v 2-body (C,only) Figure 8. View of the most stable structure of two 1D helixes with
050 - | three atoms per elementary helical chain.
' & 2-body(C,+C,) ) _ _ _
—~ TABLE 3: Coordinates of Atoms in Two Helixes with Three
g 0 3-body Atoms per Elementary Cell and Parameters Equal toq =
= 1/2,0 = 300°, R = 4.25 Ao
% 025 A Total 2-body -~ atom X y z
= A 0.0 0.80709 0.0
Sa) Az 1.52667 —0.40355 0.69897
< Az 3.05334 —0.40355 —0.69897
0.00 Ay 4.58 0.80709 0.0
’ B1 0.76330 4.65355 0.69897
B> 2.29 3.44290 0.0
Bs 3.81660 4.65355 —0.69897
B4 5.34330 4.65355 0.69897
-0.25
30 35 40 45 50 55 60 *In A
R/A two are chemically bound and are therefore at very short
Figure 7. Partitioning of the interaction energy between two infinite  separation. The final total interaction energy is lowered by
conrotatory 1D helixes (three atoms per cell) of sulfur atoRis. the about 40%. However, the equilibrium interchain distance is

distance between centers of helixes. approximately the same with or without three-body terms. The

damping of three-body terms is small and may be neglected as
the Cyp terms contributions. The numerical values for the
equilibrium point areRmin = 4.24 A andAEm» = —0.111 eV/

difference is not very important; we are in the flat region, and
we are only running semiempirical calculations and cannot claim
we are as accurate as in the case of very elaborate ab initio . . .
calculations (which are not feasible in our case anyway!). What 210M- Let us note from Figure 7 that the consideratioCof
is important is thecomplete similaritybetween the general  tems only, withouCs and the three-body terms, would lead to
shapes of the contours, which may allow us for all subsequent@ Very weak minimum and cohesion. Although concerning a
calculations (in part II) to start frorg and¢-values determined ~ nonrealistic structure, these resulsok quite satisfactory
from the repulsive part only, at least in the case of the most Indeed, the interchain distance is roughly of the ordea/@f
complicated structures for which a complete optimizatioof ~andb/2 for w, and of the order oé andb for w; (the real 3D
and6 with equations including dispersion terms is not possible. interchain distancesg andb being the crystalline parameters
This is a non-negligible simplification concerning the computing (@ = 9.02 A,b = 8.33 A,c = 4.58 A for S,3, anda = b =
time point of view. 458 A, c = 16.32 A forS,,, from Tuinstrd5). The depth of
Now at this minimum irg andé, the interhelix distanc® is the potential curve is about 10 kJ/atom. This is a reasonable
varied. Results are shown in Figure 7 where each contribution value that should increase when considering more realistic 3D
to the total energy is clearly indicated. The coordinates of all Systems, since more interactions are taken into account. In
atoms, including the fourth in each helix that is deduced from Figure 8, a view of the space arrangement for the most stable
the first by translation symmetry, are given in Table 3 for a structure of the above example is shown. The valug @f/2)
value of R very close to the minimumR = 4.25 A. The is mainly responsible for the strong interpenetration of the two
introduction of theCg term has lowered the energy, and the helixes. The shortest distance between atoms in different helixes
relative contributions o€s andCg are such that we may expect  is equal to 3.45 A. Then the value of the van der Waals radius
a smaller contribution o€1. Three-body interactions are not  of sulfur in this system is equal to 1.73 A. This is in excellent
negligible because we consider some triplets of atoms in which agreement with the experimental veii€1.74 A for ).
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6. Conclusion

We have presented in this paper a calculation method aimed

at the study ofv-sulfur. This method is based on semiempirical

Ezzine et al.

(13) Tang, K. T.; Norbeck, J. M.; Certain, P. R.Chem. Phys1976
64, 3063.

(14) Kiselev, A. V.; Poskus, D. FZur Fiz. Chim 1958 32, 2854.

(15) Varandas, A. J. C.; Dias da Siva,JJChem. Soc., Faraday Trans.

methods; it combines the periodic version of EHT that allows 21986 82, 593.

the description of crystals with large unit cells and a perturbation
The first correctly

describes the covalent bonds and the repulsive part of the
intermolecular potential; we have checked that EHT calculations

theory for the dispersion interactions.

on a crown-shapeds$ing led to a correct minimized structure.

The second part generates the attractive part of the intermo-

(16) Koutselos, A. D.; Mason, E. Al. Chem. Phys1986 85, 2154.

(17) Tang, K. T.; Toennies, J. B. Chem. Phys1984 80, 3726.
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lecular interactions. The parametrization has been tested ands, 4=5g5.

validated on the known structure of thesulfur. The new
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intermolecular potential function predicts values in agreement 1986 41, 1.

with experimental values for the unit cell parameters and for

the sublimation energy. The polarizabilits = 5.4 A3 that
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M. J. Electron Spectrosc. Relat. Phenat888,46, 381.
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we have obtained for the sulfur atom seems satisfactory andpress: Boca Raton, FL, 1991.

could be compared with the valeg = 6.14 A3in SCN- where
the sulfur atom is poorly and negatively charged,.1%.*” We

have also calculated the equilibrium geometry for a system made

of two infinite sulfur chains (polymerized sulfur). The energet-

ics and structural parameters are also in good agreement with
experimental results. This is an encouragement to use our

(26) Slater, J. CPhys. Re. 1930 36, 57.

(27) Burns, G.J. Chem. Phys1964 41, 1521.

(28) Clementi, E.; Raimondi, D. LJ. Chem. Physl963 38, 2686.
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method on less known structures and in particular that of 1963; Vol. 1.

w-sulfur. This is the goal of our part Il.
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