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The combination of two semiempirical methods, the “extended Hu¨ckel theory” for repulsive energy and a
method derived from classical perturbation expansions for the dispersion energy, is used to evaluate the weak
interaction energy between covalent rings or chains of sulfur compounds. In this paper, the parametrization
method of both parts of the energy is set up. The volume of the elementary cell and the heat of sublimation
of R-sulfur are in correct agreement with experimental values. As a test for the study of polymerizedω-sulfur,
a simple 1D-example shows correct behavior for interchain distance and cohesive energy. In each case, a
detailed analysis of the contribution of each term involved in the total intermolecular potential function is
given. In particular, we show the importance of three-body terms in the energetics of such structures.

1. Introduction

The purpose of this paper is to describe a method of
calculation suitable for the study ofω-sulfur, whose structure
is characterized by large unit cells resulting from the assemblage
of covalent moieties through weak bonds. Sulfur appears under
several allotropic forms in the solid state where building blocks
are rings (S6 or S8) or chains (infinite helixes). TheR-sulfur is
a well-known molecular crystal made of S8 crown-shape rings.
Theω-sulfur is not the most common variety, but it presents
industrial interests; it is used in agriculture and in the vulcaniza-
tion process. Its building blocks are infinite helixes. There
are two different allotropes whose complicated elementary units
cells are not completely resolved. Our final goal is to investigate
the low-energy structures, to compute from there a reaction path
leading from this solid to S8 molecules, and thus to study the
sublimation process. The complexity of the structure requires
our strategy to be a combination of two semiempirical methods.
A careful parametrization is necessary to obtain sufficient
accurate energies.
The sulfur crystalline structures involve both intra- and

intermolecular interactions; the potential associated with the
intermolecular forces is usually partitioned into a repulsive part
and a negative part. In our systems, the size of the unit cell
and the great number of calculations required to explore the
hypersurface of potential energy rule out the use of ab initio
methods. For the intramolecular and the repulsive parts of the
intermolecular interactions, we have used a crystalline extension
of the extended Hu¨ckel method (EHT). The theoretical treat-
ment of weak intermolecular forces necessitates going beyond
the EHT approximation: the EHT method only accounts for

the repulsive part, whereas the attractive part corresponding to
the dispersion energy may also be reached from semiempirical
approximations. The combination of the two methods did allow
a successful treatment of the alkane adsorption on graphite.1

Here, we propose the same type of approach but with more
refinements of the dispersive part as recently introduced in the
determination of the intermolecular potential function for the
simulation of the physical adsorption of rare gases in silicalite
zeolite.2

In this first paper (sections 2 and 3), we will briefly recall
the methods and develop the adequate parametrization for the
sulfur compounds. The parametrization of the attractive part
is unambiguously derived from the dispersion equations. For
the repulsive part, we will discuss the influence of the parameters
already published. In section 4, we will test the method on S8

molecular rings and on a known structure, theR-sulfur. Finally,
in section 5, we will apply the method to a model structure
made of two infinite helixes. This is a preliminary calculation
in a complete study of theω-sulfur that will be fully developed
in part II.

2. Theoretical Methods

As outlined in the Introduction, the quantum mechanical ab
initio approaches for calculating the energy between two
molecular systems in weak interaction are quite complex.3 Even
at the SCF level of approximation,4 which is insufficient to
correctly involve the dispersion, since electronic correlation is
required, this algorithm is too complicated and time-consuming
to treat atomic systems such asR- or polymerized sulfurs.
Indeed, both the number of atoms in the elementary cell and
the number of calculations to optimize the geometry are large.
Therefore, a simplified formulation for the interaction potential
between the two systems is needed. For weakly polar or
nonpolar systems only a short-range repulsive part and a long-
range dispersion part are involved. For a supermolecule
calculation, the first one is essentially obtained from an SCF
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calculation, since at this level of approximation (Hartree-Fock)
the energy curve either is repulsive (as in our cases in this paper)
or may have a very weak minimum (in some other cases).5,6

The second one would appear with the introduction of electronic
correlation.
Repulsive Energy. The extended Hu¨ckel theory7 (EHT)

implemented on crystalline structures8 has proved to give a
correct repulsive energy in describing the physisorption of
alkanes on graphite.1 In nonzero temperature simulations,
adjusted potentials are currently used. For example, in the
adsorption of argon in silicalite zeolite ZSM-5, very accurate
potentials for both the dispersion and repulsive parts (referred
as the PN1 model) were elaborated and used in Monte Carlo
simulations.2,9 In a recent study, it has been shown that
replacing the adjusted Born-Mayer type repulsive potential,
part of the PN1 potential, by EHT potential curves led to
accurate energy profiles too.10 Therefore, it looks quite
legitimate to use EHT in the calculation of the repulsive energy
of molecular crystals.
The repulsive energy of the whole system is deduced from

the difference between the total EHT energy of the solid andn
times the EHT energy of one covalent molecule or infinite helix
wheren is the number of such covalent entities in the unit cell.
The EHT calculation leads to a repulsive interaction that
originates from the repulsion between the valence electrons of
each covalent part. Indeed, each molecule (or chain) individu-
ally appears as a saturated compound with a bandgap between
the occupied and unoccupied electronic levels. The interaction
of two similar molecules, therefore, concerns the pair combina-
tions of degenerate levels, an occupied orbital of one molecule
interacting with the equivalent occupied orbital on the other
molecule. The antibonding combination being populated, one
gets a four-electron repulsion. At the distances considered, the
repulsion between the core levels is negligible; a fortiori, the
nuclear repulsion is screened and is not the origin of the sulfur-
sulfur repulsion. Equations of periodic EHT have been widely
developed and discussed in the literature. For physisorbed
systems, a detailed discussion of the repulsive character can be
found elsewhere1 with references therein. For the sake of clarity,
we briefly recall main formulas and notations for periodic EHT.
A set of valence Slater type orbitals (STO) and translation
vectors applied to a unit cell define the periodic system. Then
a set of atomic Bloch functionsφj(k), wherek is a vector in
the reciprocal space, is constructed. These functions form a
basis for a linear combination expansion of crystal orbitalsψj-
(k). The application of the variational theorem for eachk-point
leads to the secular determinant

where the energy integralHµν(k), the overlap integralSµν(k),
and energiese(k) are defined in terms of Bloch functions. The
overlap integralSµν(k) is directly expanded in terms of basic
overlap integrals between atomic orbitalsSµν; it is modulated
by a phase-dependent term. The energy integrals are expressed
in terms of overlap integrals and the atomic energy levelsHµµ
andHνν according to the weighted formula11

In this weighted formulation, the parameterK in eq 3, instead
of being equal to 1.75 as in the Wolfsberg-Helmoltz formula,
is an expression that is dependent on the atomic energy levels.

The atomic energy levels are often approximated by the
experimental ionization potentials of the corresponding orbitals.
Sometimes it is more appropriate to parametrize from ab initio
values, for example, from Herman and Skillman tables.12 Some
fluctuations around these values can also be allowed according
to the charges on atoms in complex systems. Parametrization
for the sulfur atom is discussed in section 3. Calculations are
carried out for a set of representative points in a reduced part
of the Brillouin zone, and energy is averaged over these points.
Dispersion Energy. Application of time-dependent perturba-

tion theory leads to a dispersion multipole expansion, which in
the case of two-body terms, is expressed as

where the coefficientsC’s describe the interaction between two
instantaneous dipoles (C6), a quadrupole and a dipole (C8), an
octopole and a dipole, and two quadrupoles (C10). Little algebra
is needed to link these coefficients to 2l-pole dynamic polar-
izabilities Rl(ω) at frequencyω. They are expressed as an
infinite sum whose terms are functions of then-pole energy
transition between the ground state and an excited state, of its
oscillator strength, and of the frequency. A straightforward
relation betweenRl(ω) andRl(0), the staticlth pole polarizability
(at ω ) 0), leads to a general formulation for the two-body
coefficients in atomic units:2

wherel1 andl2 equal 1, 2, ... for a dipole, a quadrupole, etc.,Rl

is the lth pole polarizability, andηl is an averagelth-pole
transition energy for each interacting species. The connection
between the notations of eqs 4 and 5 is ensured for the first
terms by13

The parametersηl can be approximated by13

whereSl(0) is known as thelth-order sum rule. It has been
shown that a good approximation for the parameterη1 is given
by13

where Neff
A is the effective number of electrons for A. A

detailed discussion of this approximation is given in earlier
papers.2 This is sufficient to entirely defineC6 parameters. For
C8 we needη2 expressed from theS2(0) function (second-order
sum rule) andR2(0) already defined. Unfortunately, these
quantities are only known for few species. Kiselev et al.14

proposed an approximate equation for the quadrupole-dipole
dispersion coefficientC8

AB, which involves only known and
previously defined quantitiesη1 andR1

|Hµν(k) - e(k)Sµν(k)| ) 0 (1)

Hµµ(k) ) Hµµ[1.75Sµν(k) - 0.75] (2)

Hµν(k) ) [K/2](Hµµ + Hνν)Sµν(k) (3)

ud
AB(R) ) -[C6

ABR-6 + C8
ABR-8 + C10

ABR-10 + ...] (4)

CAB(l1l2) )
(2l1 + 2l2)!

4(2l1)!(2l2)!

ηl1

A ηl2

B

ηl1

A + ηl2

B
Rl1

A(0)Rl2

B(0) (5)

C6
AB ) CAB(1,1)

C8
AB ) CAB(1,2)+ CAB(2,1) (6)

C10
AB ) CAB(2,2)+ CAB(1,3)+ CAB(3,1)

ηl ) [Sl(0)/Rl(0)]
1/2 (7)

η1
Α ) [Neff

A /R1
A(0)]1/2 (8)
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For pairs of like atoms, this expression underestimates the
values found from correlated ab initio calculations for neutral
atoms.15 Let us denoteK8 the ratio between the “exact” and
the approximated value forC8

AA. Combining eqs 6, 5, 8, and 9
and introducing thisK8 factor lead to a quadratic equation in
(R2

A)1/2 for pairs of like atoms:

where theω ) 0 value is understood. An approximate
expression forS2

A has been given:16

Substitution of (11) in (10) leads to the final form of the
equation:2

The resolution of eqs 12 and 11 are sufficient to getη2 and
thereforeC8

AB. Similar, but more complex, derivations are
available elsewhere2 for C10

AB.
The repulsive part of the energy, proportional to the square

of the overlap integral between the valence orbitals of the two
interacting species, is well represented by an atom-atom Born-
Mayer type expansion:

whereAr andbr are fitted parameters obtained from EHT energy
vs distance curves. To take into account the fact that overlap
of electron clouds cannot be neglected in the short-range region
of distances, i.e., around the equilibrium separation, adamped
multipole expansion was introduced.17 The dispersion multipole
expansion is now written as

where

In the last equation,br is the Born-Mayer parameter of eq 13.
The damping functions f2n are positive and tend to unity at
sufficiently large distances where long-range intermolecular
forces prevail. On the other hand, it is clear from eq 14 that
terms with largen are unimportant at separations that occur in
condensed phases.
Perturbation theory up to third and fourth order is necessary

to obtain three-body dispersion terms involving triplets of
species A, B, and C. The sign of these three-body terms
depends on the geometrical configuration, since such triplets
are both distance- and angle-dependent. Therefore, it is
customary to write the dispersion three-body term as18

with the notations already used for two-body terms and where
WABC is a geometrical factor andZABC is an electronic factor.
The functionZABC is a direct extension of the two-body formula,
connected to theηl i’s and the Rl i(0)’s that can be found
elsewhere.2,19 The geometrical factorsWABC are functions of
the threeli’s, the three interatomic distances, and the three
interior angles of the triangle in which the triplet of atoms are
vertexes.2,13 These terms have to be damped just like two-body
interactions. Two or three different interatomic distances are
present in eachW term. Therefore, we propose in this work to
introduce a damping factor for three-body interactions that is a
product of two or three f2nssuch as expressions given in eq
15.

3. Parametrization

Dispersion Expressions. The two key parameters areNeff

andR1, which are sufficient to determineC6. Then eqs 11 and
12 giveS2 andR2sprovided thatK8 is knownsand consequently
η2 and C8. Here, the development of the series has been
considered up toC8, after checking numerically that higher
contributions were of the same order of errors compared with
those brought by other approximations elsewhere in the method.
This will be shown in the discussion of one of the examples at
the end of the paper. We shall successively discuss the main
steps necessary to determineR1, Neff, andK8 for in-framework
sulfur atoms. The parameterbr necessary to determine the
damping factors in eq 15 can only be found once the repulsive
part has been parametrized. We delay this discussion at the
end of the next section.
A new method, combining general relaxation theory with

Moretti’s electrostatic model, was designed to determine in-
framework dipole polarizabilities from the evaluation of extra-
atomic relaxation energy during the two-electron Auger pro-
cess.20 Although this method was primarily set up for ionic
and semi-ionic solids, it has been shown for silicon, aluminum,
and magnesium compounds20 that the model can be applied
whatever the target environment (ionic, covalent, or ionocova-
lent).
Auger electron spectroscopy (AES) relies on a two-electron

process. When X-ray radiation of a chosen frequency hits a
target atom in a compound, one electron of its inner shell is
ejected. This allows an electronic transition for a second
electron from an upper shell to the hole left in the inner shell.
In doing so, this second electron does not give rise to a radiation
but gives its energy to another electron of the same level, which
is in turn ejected. Therefore, the transition energy is converted
into kinetic energy. The generalized Auger parameter is defined
as the sum of this kinetic energy plus the binding energies of
the two electrons originally in the upper levels minus that for
electrons in the inner shell at the beginning of the Auger process.
If one considers two compounds containing the same atomic
target, the variation of the Auger parameter is equal to

where RD
ea is the dynamic extra-atomic relaxation energy

associated with the Auger process in each of the two species
considered. The dynamic extra-atomic relaxation energy can
be obtained from ligand polarization energy, as proposed by
Moretti.21 The second electron ejected during the Auger process

ud
ABC(l1,l2,l3) ) ∑

l1
∑
l2
∑
l3

ZABC(l1,l2,l3)W
ABC(l1,l2,l3) (16)

∆ê ) 2∆RD
ea (17)

C8
AB ) 45

8
R1
A R1

B[ η1
A

2η1
A + η1

B
+

η1
B

2η1
B + η1

A] (9)

2[S1A S2AR1
A ]1/2R2

A - K8[R1
A S1

A R2
A]1/2 - K8[S2

A(R1
A)2]1/2 ) 0 (10)

S2
A ) [9S1

A R1
A]1/2 (11)

2[9(Neff
A )3/R1

A]1/4R2
A - K8[Neff

A R1
A]1/2(R2

A)1/2 -

K8[9Neff
A (R1

A)5]1/4 ) 0 (12)

ur ≈∑
i*j
Ar exp(-brRij) (13)

ud ) -∑
n>2

f2n(C2n/R
2n) (14)

f2n ) 1- (∑
k)0

2n (brR)
k

k! ) exp(-brR) (15)
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is used as a probe of the ligand electrostatic energy associated
with the emission of the first electron from the atomic target.
Classical formulas developed elsewhere20 for N identical

ligands lead to an expression for the polarization energy

whereEB is the electrostatic field experienced by any ligand at
distanceR from the atomic target,N is the coordination number,
andγ ) 1+ DRR-3. D is a dimensionless factor that depends
only upon the site symmetry. By identifying the polarization
energy with the extra-atomic dynamic relaxation energy, one
can derive the following expression for the variation of the
generalized Auger parameter (between two compounds contain-
ing the same atomic target):

The factor 14.4 arises when transforming energy units from au
to eV and distance units from au to Å. For two compounds A
and B haVing the same atomic target,eq 19 is more clearly
rewritten as

Knowing the ligand dipole polarizability and the extra-atomic
relaxation energy for a given compound is sufficient to get these
pieces of information for the second compound. Unfortunately,
these values are not known unambiguously for a large number
of compounds. An idea was to scale eq 20 by considering an
ideal unpolarizable compound20 (UP) with a refractive index
equal to unity. It was shown22 that a linear behavior can be
expected when the generalized Auger parameter vs (1- ε0

-1)
was plotted. This provides a means of calculatingêUP. Then
the dipole polarizability for the ligands linked to the atomic
target (S in our case) is given by

where∆ê is the variation of the generalized Auger parameter
between a given sulfur compound and the ideal UP-sulfur
compound andRS-L is the sulfur-ligand distance.
A mean linear curve, plotted from the available data, is shown

in Figure 1. Whenn ) 1, we obtainêUPS) - 38.7( 1.1 eV,
which leads to∆ê ) 7.9( 1.1 eV, which should be used in eq
21. In fact, we decided to consider∆ê as a parameter, of course
with a rational value, but directly connected to the parametriza-
tion of the repulsive part in order to have the simplest
parametrization for the whole. We shall discuss this point in
more detail later on. We finally chose∆ê ) 6.8 eV, which
can be considered as issued from the lower bound forêUPS.
Sulfur is divalent (NS ) 2), and in eq 21, the factorDS

remains to be determined. Its expression has been derived
elsewhere,20

whereθj ) (180- Rj)/2 ) 36.1°, Rj ) 107.8° being the angle
between two adjacent S-S bonds. ThenDS ) 0.39. The

covalent distance has been taken to beRS-S ) 2.07 Å. From
eq 21, we obtainR1 ≡ RS ) 5.4 Å3 (from the upper bound for
êUPSwe would have obtainedR1 ) 7.7 Å3). The fact that the
value of the dipole polarizability of sulfur atoms inR-sulfur
rings is actually roughly twice that for the neutral and isolated
sulfur species reflects the covalent character of the S-S bond.
The view provided by the Auger model considers atomic sites;
the polarizability is attributed to ligands of a given X-ray target.
Another equivalent view is brought about by introducing the
concept of bond polarizability originally derived for covalent
bonding. This model leads us to consider bonds rather than
atoms as centers of interactions.
The parameters for the fit ofNeff vs the electronic structure

have been previously determined.2 For neutral sulfur atoms the
appropriate formula is

whereN is the total number of (s, p) electrons in the outer shell.
Straightforwardly, we obtainNeff

S ) 4.931. In the first paper
of a previous study,2 the correction factorK8 is drawn vs the
effective number of electrons (Figure 2). For S atoms, using
theNeff

S value determined above, we obtainK8 ) 2.968. Now
all remaining parameters can be computed; they are all listed
in Table 1.
Repulsive Interaction. Four parameters are necessary to

compute terms in eqs 2 and 3: the matrix elementsHµµ for
each atomic orbital (s and p electrons) and the Slater exponents
ús and úp entering in the algebraic development of overlap
integrals. Many techniques, more or less empirical, and
approximations have been proposed. Diagonal terms of the
Hamiltonian are usually identified with ionization potentials of
the valence subshell considered, i.e., with the corresponding
orbital energies assuming Koopman’s theorem to be valid. The
Slater exponents may thus be determined from ab initio atomic
calculations. They also can be derived from empirical rules.
Some of the main parametrizations proposed are listed in Table
2. The exponent parameters for STO’s have been determined

Upol ) - NR
2γ

E2 (18)

∆ê ) 14.4∆(NR
R4γ) (19)

êA - êB ) 14.4[ NARA

RA
4 + DARARA

-
NBRB

RB
4 + DBRBRB] (20)

Rs
comp)

∆êRS-L
4

14.4NS - DSRS-L∆ê
(21)

DS )
1+ cos2 θj

8 cos3 θj

(22)

Figure 1. Scaling line for sulfur compounds. Generalized Auger
parameters23,24 (ê in eV) and refractive indices25 (n), respectively, are
31.6 and 2.367 for ZnS, 33.7 and 1.625 for NaSCN, 33.5 and 1.511
for Na2S2O3‚5H2O, 34.1 and 1.499 for Na2SO4‚2H2O, 32.7 and 1.665
for ZnSO4‚nH2O, 32.9 and 1.503 for NiSO4‚nH2O, 33.2 and 1.732 for
CuSO4‚nH2O, 33.4 and 1.460 for NaHSO4‚H2O, 33.6 and 1.548 for
Na2SO3, and 30.4 and 2.967 for HgS.

Neff
S ) -0.0293N2 + 0.9966N+ 0.0062 (23)
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a long time ago by Slater26 from the so-called Slater rules and
by Burns27 who distinguished between s and p electrons.
Derivations from ab initio SCF calculations were also used.28

Values obtained from Slater rules look roughly as mean values.
For Hµµ, all values are close together except theHss value of
Pyykkö and Lehr, Jr.,29 which is large.
It is important to evaluate the influence of these parameters

on the energy of our atomic systems. For a simple system
sufficient to give a trend, we considered the interaction energy

of two infinite 1D helixes of sulfur atoms built from three-atom
elementary cells whose geometry will be described later. In
Figure 2 are plotted the results arising from changes both inú
andHµµ. Clearly, even large changes inHssorHpp do not affect
significantly the interaction energy. Conversely, the Slater
exponents are the sensitive parameters. This is not completely
surprising. Indeed, the main terms in the EHT-matrix elements
are overlap integrals whose magnitudes are directly determined
from the values of Slater exponents. TheHµµ terms are less
important. As it was explained in the last section, the∆ê value
was chosen in order to use the simplest parametrization of the
repulsive partsthe standard onesi.e., mean values forú
exponents and no d functions. Polarization functions (d
functions here) may also be introduced in these semiempirical
calculations. It is worth noting that these are needed to correctly
describe the ab initio electronic structure in some highly
coordinated sulfur compounds. Since we consider here low-
coordinated sulfur compounds and since we have to calculate
repulsive intermolecular interactions, it is safe not to take into
account d functions. We checked on typical cases, indicating
that these choices were reasonable. For example, for all the
sulfur compounds studied in our work, it has been proved that
it was not worth using a value ofús very different from that of
úp.
As outlined in section 2, we need a Born-Mayer expression

of the repulsive energy (eq 13) to get the parameterbr needed
to parametrize the damping function (eq 15). First, it is
important to stress that the total energy is reached from two
independent contributions. This means that dispersion param-
eters (C6, C8, ...) are determined as shown above and that for
the repulsive part EHT results are directly introduced in the
calculation. Therefore,Ar and br are not required for the
calculation of the repulsive part of the energy. Onlybr is needed
in the damping function (eq 15) for the dispersion energy.
Moreover, close to the interhelix distances corresponding to the
energy minima encountered in these weakly bounded molecular
crystals, this damping contribution is weak and, thus, so is the
influence of thebr value. The simple exponential form is in
fact too simple to reproduce the repulsive energy of intermo-
lecular systems in a large range of intersystem distances.
Therefore, since in this paper we are mainly interested in
obtaining information close to the energy minimum, and not in
obtaining a general potential, we decided to fit only a small
part of the repulsive curves, the one close to intermolecular
system distances. In Figure 2, for the retained set of atomic
parameters, the fitted values thus areAr ) 33.3 eV andbr )
1.7 Å-1.

4. r-Sulfur Structure
At room temperature, sulfur is an orthorhombic molecular

crystal made of S8 crown-shaped rings. The structure is well-
known.31-33 The unit cell (a ) 10.465 Å,b ) 12.866 Å,c )
24.486 Å) includes 16 S8 rings organized in a nontrivial
noncoaxial stacking. The rings are slightly distorted owing to
crystal field effects. Enthalpies of sublimationHsub(298 K, 1
atm) of R-sulfur have been obtained in a mass spectrometer
coupled to a Knudsen effusion cell.34 These experiments
investigate the stability of the gaseous clusters in equilibrium
with the solid. Taking S8 as the reference, they obtained an
enthalpy of sublimationHsub(298 K, 1 atm)) 100( 5 kJ mol-1.
From our 0 K calculations, one can determineEsub(0 K) and
then ∆Hsub by adding the integral of∆Cp, the molar heat
capacity from low-temperature adiabatic calorimetry experi-
ments.35 To check the validity of our method, we will determine
the minimum energy structure, i.e., the value of the crystalline

Figure 2. Repulsive interaction energy between two infinite 1D helixes
(three atoms per cell) of sulfur atoms.R is the distance between centers
of helixes. Curves are for the following values of, respectively,ús )
úp, Hss (in eV), andHpp (in eV): (+) 1.817,-16,-13 and 1.817,-20,
-11; (2) 1.817,-20, -13; (b) 1.817,-24, -13 and 1.817,-20,
-15; (3) 1.6,-20,-13; (]) 2.0,-20,-13.

TABLE 1: Parameters Used in the Calculation of the
Dispersion Energy of Sulfura

Basic Parameters
K8 2.97
Neff ≡ S1 4.93
R1 36.36
S2 40.17
R2 292.09

Two- and Three-Body Parametersb

C6 365.11
C8 14716.50
DDD 3318.83
DDQ 26723.17
QQD 2151.763× 102

QQQ 1732.623× 103

DDD(4) -4525.219× 102

a All values are in a.u., apart the dimensionless numbers Neff and
K8. bD stands for “dipole interaction” and Q for “quadrupole interac-
tion”. The last term is a fourth-order term. They are coefficients in the
W factor in eq 16.

TABLE 2: Parametrization of Integrals and Exponents for
EHT for Sulfur Atoms

authors ús úp -Hss
a -Hpp

a

Slater26 1.817 1.817
Burns27 1.967 1.517
Clementi & Raimondi28 2.122 1.827
Pyykkö& Lehr, Jr.29 2.042 1.689 24.145 11.555
Herman & Skillman12 20.8 10.3
EHT standard parameters 1.817 1.817 20.0 13.3
Chen & Hoffmann30 20.0 11.0

a In eV.
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parameters, and then the energy of sublimation connected to
experiments. We are mainly concerned by the weak interaction
energies between covalent clusters (molecular rings here).
Starting from the experimental positions of atoms, we shall vary
the crystalline parameters, keeping the covalent bonds and angles
at their original values. Therefore, the treatment of the covalent
rings by the EHT method (only a semiempirical method!) is
not of crucial importance, since we are concerned with finding
the intermolecular interaction energy from a difference energy
calculation. However, to check the validity of the EHT method
in determining the minimum energy structure of this type of
covalently bonded systems, we first perform calculations on the
isolated S8 molecule.
The geometrical characteristics of the S8 molecule are well-

known. The covalent interatomic distance, the covalent angle,
and the dihedral angle, respectively, are36 2.060( 0.005 Å,
108.0( 0.8°, and 98.3( 2.1°. More recent determinations37

propose a smaller value for the distance (∼2.050 Å) but quite
comparable values for the angles. Most of the recent ab initio
calculations fall in each range of errors when the minimum
energy structure38 is determined. From our set of EHT
parameters, defined in section 3, we findd ) 2.106 Å,R )
112.6°, and â ) 92.5°. When they are compared with the
experimental values, the error is roughly 2%, 4%, and 6% for
d, R, and â, respectively. This molecule has been already
studied by EHT with other parametrizations,39 including in some
cases an electrostatic correction.40 These authors found com-
parable results as ours. The introduction of d functions give
worse results, and the introduction of electrostatic corrections
does not bring significant improvements. In conclusion, we see
that in such types of element and molecules, EHT calculations
restricted to s and p orbitals lead to correct results even for
strongly covalent bonds (i.e., for short values of interatomic
distances). For difference energies between the solid and the
constituting molecules, only EHT terms corresponding to weak
intermolecular bonds (i.e., for large values of interatomic
distances) will effectively contribute. Therefore, we may
legitimately use EHT calculations for determining the repulsive
interaction energies of our sulfur systems.
Coming back to orthorhombic sulfur, we started from the

geometry, taking the slight distortions of rings into account.41

Then we varied the crystalline parameters, keeping fixed the
geometry of the rings. Let us first discuss the choice of the
number ofk-points, sampling the (reduced) Brillouin zone, on
which the total EHT energy is averaged. It is well-known that
the larger the size of the elementary cell the lower the number
of necessaryk-points required for good accuracy of the total
energy. Indeed, for large unit cells, the band dispersion is weak;
it corresponds to taking into account phase relationships at
distances equal to or larger than the norm of translation vectors,
and the calculations can be performed at a single point of the
Brillouin zone when the cell vectors exceed 10-15 Å. Then it
has been checked that we can use the origin of the Brillouin
zone, theΓ point, since this high symmetry point is the most
obvious one. In the case of the two-helixes example given in
section 5, we will see later that we have to introduce six
k-points, the zone-center point alone being quite insufficient in
this (1D) small elementary cell case. Adding the dispersion
part of the energy, as described earlier with parameters given
in Table 2 and taking into account that all ring environments
are not the same, we show in Figure 3 the variations of the
components of the interaction energy vs the crystalline parameter
b; the two other crystalline parametersa andc are kept constant
(experimental values). Under these assumptions, we are very

close to the absolute minimum (see results below). The role
of the three-body terms is important because some triplets
involving two bonded atoms are taken into account. Removing
these terms would lead to a very weak cohesion. The complete
minimization of the energy with respect to all three crystalline
parameters leads toa ) 10.9 Å,b ) 13.7 Å,c ) 24.5 Å, and
∆Etot ) -0.80 eV/mol(S8).
Comparing the experimental values given at the beginning

of the section, we see that the calculated values fora andb are,
respectively, 4% and 6% larger than their experimental coun-
terparts. The experimental value forc is found from our
calculations. The volume of the calculated elementary cell is
about 11% higher than the experimental volume. The enthalpy
of sublimation is reached by adding the integral of the∆Cp

term betweenT ) 0 andT ) 298 K, equal to 27 kJ mol-1,35 to
the interaction energy. We obtain∆Hsub(298 K) ) 104 kJ
mol-1. The difference in the experimental value falls within
the error range of the mass spectrometer measurement, the error
on ∆Cp being negligible.35 Therefore, the model of intermo-
lecular potential function and its parametrization is able to
predict structural and thermodynamic properties ofR-sulfur in
agreement with experimental results. Theoretical calculations
onR-sulfur have been published some years ago, but the driving
idea of these studies was different from ours. They use the
so-called “6-exp” potential function (ther-6 term as the
attractive part and the exponential function for the repulsive
one), but the parametersC6, Ar, andbr (in our notations) are
adjusted in order to have the right geometrical structure and
sublimation energy. Then they use the ad hoc potential in a
dynamic calculation to study intermolecular vibrational
modes,42-44 internal ones in a nonrigid body model,44 and
Raman frequencies.42 As a first remark, let us stress on the
parameters values. As explained at the end of section 3, our
values forAr andbr (and forC6 too) are fitted to a few points
close to the minimum energy structure only and cannot be
compared to those of Rinaldi and Pawley. However, from the
retained set of atomic parameters (central curves in Figure 2),
we can get another fit, better at short distances than the previous
one but worse close to the interhelix distances. These new
values areAr ) 2303 eV andbr ) 2.9 Å-1. A straightforward

Figure 3. Partitioning of the interaction energy between rings in
R-sulfur along theb-axis.
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change of units shows that these last parameters are of the same
order of magnitude than those of Rinaldi and Pawley.42 In
Rinaldi and Pawley’s potential, (i) there is noC8 or three-body
terms and (ii) the numerical values of repulsive parameters are
not extracted from an independent quantum mechanical calcula-
tion. With their adjusted “6-exp” potential all the cited
authors42-44were able to find a correct agreement between their
calculated lattice frequencies and the experimental ones. We
have shown in our examples how theC8 and three-body terms
may be important quantities for determining the right cohesive
energy. We may conclude that for lattice frequencies these
terms, rather connected to the structure (which is correctly
described by two-body terms as shown in our second example
in the next section), are likely less important than in the
calculation of cohesive energies. However, the remaining slight
discrepancies compared with experimental values might be, at
least partly, canceled out by the introduction of higher order
terms in the dispersive perturbation expansion, as in our
calculations.

5. Interaction of Two 1D Helixes of Polymerized Sulfur

For this example, we study the interaction of two 1D helixes
in a simple case for their respective geometry. Let us consider
two parallel conrotatory helixes, with a three-atoms per helix
elementary cell. All parameters have been determined in the
preceding sections, apart from the distances and the angles
between covalent bonds we have consideredrs-s ) 2.07 Å,Rsss

) 108.5°, and h ) 4.58 Å, whereh is the height of each
elementary cell. This choice is connected to the real 3D case
of ω-sulfur, which will be studied and discussed in part II.
Without carrying out the complete optimization of structures,
let us first see on this example the behavior of the repulsive
energy when two of the geometrical parameters are varied. Let
us define the parameterq as a measure of the shift of the second
helix relative to the first. It is defined as the percentage of the
heightQ between two successive atoms (here,Q ) h/3 ) 1.53
Å). Shifts larger than 1 (1+ x) are analogous to shifts forx (0
e x < 1). The parameterθ represents the angle between the
projection of the position of the first atom of the second helix
and the y-axis. For the first helix the choice of reference axes
is such thatq ) 0 and θ ) 0°. In Figure 4, we plot the
interaction repulsive energy contour map as a function ofq and
θ. In this 1D calculation sixk-points are sufficient to obtain
the convergence of the average energy. Starting from [q ) 0,
θ ) 0°], a shift followed by a rotation [q ) 1, θ ) -120°]

leads to an equivalent geometry. The periodicity is indicated
in the figure by the double-pointed dashed-line cell. For this
structure, a low-energy region (∆Erep < 0.04 eV/atom) exists
and the positions of two minima (∼0.026 eV/atom) are indicated
by crosses. They lie in the flat region at the coordinatesq )
1/2 andθ ) 260° and 340°. Let us examine why we have the
minima at such values ofq andθ. Some typical interactions
are schematized in Figure 5. Three atoms (the elementary cell)
of each helix are represented, and the black, full circles
correspond to the atoms in the middle with respect to the height.
For q ) 0, the repulsion is maximum forθ ) 180°, while the
most stable configuration must be reached forθ ) 0°. This is
effectively what is observed from Figure 4. Now, forq ) 1/2,
where minima occur, it is useful to consider four values ofθ
for the discussion. In all our plots, the helix on the left is kept
fixed. The helix on the right is shifted and rotated (in the
clockwise direction) appropriately. Let us first consider the
anglesθ ) 60° andθ ) 180°. Clearly, they correspond to the
greatest repulsions. The lowest energy configurations might
be the ones when the atom at height zero in the helix on the
left has no atoms just in front of it in the helix on the right, as
was the case for the structure [q ) 0; θ ) 0°]. These angles,
whose corresponding configurations areθ ) 0° andθ ) 240°,
are shown in Figure 5. In these two cases the repulsions are
not identical. Only the greatest repulsions are indicated and
taken into account in our reasoning. Repulsions of other atoms
must have a smaller but not negligible influence. To minimize
the repulsions between other atoms, the helixes on the right
have to be rotated by an additional small angleθS in a sense
indicated by the arrow in Figure 5. If we admit a small variation
of θS ) 20°, we exactly find the two minima, in Figure 4, atθ
) 340° (0°-20°) andθ ) 260° (240° + 20°). Now, by addition
of the dispersion part of the energy, the same type of plot is
shown in Figure 6. The similarity between the two figures is
evident. A large part of the map corresponds to cohesive
energy, the lowest energy region has the same shape and, as
previously, is very flat. A small difference appears in the
localization of energy minima. We have only one minimum
of the energy, still forq ) 1/2 but forθ ) 300°. A simple
scheme as the one proposed in Figure 5 for repulsions cannot
be applied here, since the dispersion, introduced by pertubations,
has complicated the energy equations. However, this small

Figure 4. Repulsive interaction energy contour maps as a function of
the shift and the rotation of the second helix relative to the first. Energies
are in eV/atom. Minima are indicated by crosses.

Figure 5. Simple schemes emphasizing the main interactions (dashed
lines) responsible of the minima locations in Figure 4. The height of
each atom is indicated. See text for other definitions.
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difference is not very important; we are in the flat region, and
we are only running semiempirical calculations and cannot claim
we are as accurate as in the case of very elaborate ab initio
calculations (which are not feasible in our case anyway!). What
is important is thecomplete similaritybetween the general
shapes of the contours, which may allow us for all subsequent
calculations (in part II) to start fromq andθ-values determined
from the repulsive part only, at least in the case of the most
complicated structures for which a complete optimization ofq
andθ with equations including dispersion terms is not possible.
This is a non-negligible simplification concerning the computing
time point of view.
Now at this minimum inq andθ, the interhelix distanceR is

varied. Results are shown in Figure 7 where each contribution
to the total energy is clearly indicated. The coordinates of all
atoms, including the fourth in each helix that is deduced from
the first by translation symmetry, are given in Table 3 for a
value of R very close to the minimum:R ) 4.25 Å. The
introduction of theC8 term has lowered the energy, and the
relative contributions ofC6 andC8 are such that we may expect
a smaller contribution ofC10. Three-body interactions are not
negligible because we consider some triplets of atoms in which

two are chemically bound and are therefore at very short
separation. The final total interaction energy is lowered by
about 40%. However, the equilibrium interchain distance is
approximately the same with or without three-body terms. The
damping of three-body terms is small and may be neglected as
the C10 terms contributions. The numerical values for the
equilibrium point areRmin ) 4.24 Å and∆Emin ) -0.111 eV/
atom. Let us note from Figure 7 that the consideration ofC6

terms only, withoutC8 and the three-body terms, would lead to
a very weak minimum and cohesion. Although concerning a
nonrealistic structure, these resultslook quite satisfactory.
Indeed, the interchain distance is roughly of the order ofa/2
andb/2 for ω1 and of the order ofa andb for ω2 (the real 3D
interchain distances),a andb being the crystalline parameters
(a ) 9.02 Å, b ) 8.33 Å, c ) 4.58 Å for Sω1, anda ) b )
4.58 Å, c ) 16.32 Å forSω2, from Tuinstra45). The depth of
the potential curve is about 10 kJ/atom. This is a reasonable
value that should increase when considering more realistic 3D
systems, since more interactions are taken into account. In
Figure 8, a view of the space arrangement for the most stable
structure of the above example is shown. The value ofq (1/2)
is mainly responsible for the strong interpenetration of the two
helixes. The shortest distance between atoms in different helixes
is equal to 3.45 Å. Then the value of the van der Waals radius
of sulfur in this system is equal to 1.73 Å. This is in excellent
agreement with the experimental value46 (1.74 Å for SR).

Figure 6. Total interaction energy contour maps as a function of the
shift and the rotation of the second helix relative to the first. Energies
are in eV/atom. Minima are indicated by crosses.

Figure 7. Partitioning of the interaction energy between two infinite
conrotatory 1D helixes (three atoms per cell) of sulfur atoms.R is the
distance between centers of helixes.

Figure 8. View of the most stable structure of two 1D helixes with
three atoms per elementary helical chain.

TABLE 3: Coordinates of Atoms in Two Helixes with Three
Atoms per Elementary Cell and Parameters Equal toq )
1/2, θ ) 300°, R ) 4.25 Åa

atom x y z

A1 0.0 0.80709 0.0
A2 1.52667 -0.40355 0.69897
A3 3.05334 -0.40355 -0.69897
A4 4.58 0.80709 0.0
B1 0.76330 4.65355 0.69897
B2 2.29 3.44290 0.0
B3 3.81660 4.65355 -0.69897
B4 5.34330 4.65355 0.69897

a In Å.
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6. Conclusion

We have presented in this paper a calculation method aimed
at the study ofω-sulfur. This method is based on semiempirical
methods; it combines the periodic version of EHT that allows
the description of crystals with large unit cells and a perturbation
theory for the dispersion interactions. The first correctly
describes the covalent bonds and the repulsive part of the
intermolecular potential; we have checked that EHT calculations
on a crown-shaped S8 ring led to a correct minimized structure.
The second part generates the attractive part of the intermo-
lecular interactions. The parametrization has been tested and
validated on the known structure of theR-sulfur. The new
intermolecular potential function predicts values in agreement
with experimental values for the unit cell parameters and for
the sublimation energy. The polarizabilityRS ) 5.4 Å3 that
we have obtained for the sulfur atom seems satisfactory and
could be compared with the valueRS ) 6.14 Å3 in SCN- where
the sulfur atom is poorly and negatively charged,-0.19e.47We
have also calculated the equilibrium geometry for a system made
of two infinite sulfur chains (polymerized sulfur). The energet-
ics and structural parameters are also in good agreement with
experimental results. This is an encouragement to use our
method on less known structures and in particular that of
ω-sulfur. This is the goal of our part II.
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